Quick Start#
This guide provides a step-by-step introduction to installing ISEK, configuring your environment, and launching your first decentralized agent. It is designed for developers and researchers who want to quickly get started with the ISEK multi-agent framework.
Prerequisites#
Python 3.10 or higher
An LLM API Key (OpenAI, Anthropic, Google, Azure, or other LiteLLM-supported providers)
Node.js 18+ (required for P2P features)
Installation#
Install ISEK and its dependencies using pip:
pip install isek
isek setup
The isek setup command will automatically install both Python and JavaScript dependencies required for full functionality.
Environment Configuration#
ISEK supports multiple LLM providers through LiteLLM integration. Configure your preferred model using environment variables.
OpenAI Configuration: Create a .env file in your project root directory:
OPENAI_MODEL_NAME=gpt-4o-mini
OPENAI_BASE_URL=https://api.openai.com/v1
OPENAI_API_KEY=your_api_key
Alternative Models via LiteLLM: ISEK supports various models through LiteLLM. You can use:
Anthropic Claude: ANTHROPIC_API_KEY=your_key
Google Gemini: GOOGLE_API_KEY=your_key
Azure OpenAI: AZURE_API_KEY=your_key, AZURE_API_BASE=your_endpoint
Custom endpoints: Configure via LiteLLM's standard environment variables
Note
Replace your_api_key with your actual API key. See the Configuration for detailed model configuration options.
Launching the ISEK Registry#
The ISEK registry acts as a local discovery and coordination service for agents. Start it in a dedicated terminal window:
isek registry
Keep this terminal open while running agents.
Creating and Running Your First Agent#
Create a Python script (e.g., run_my_agent.py) with the following content:
Using OpenAI: .. code-block:: python
from dotenv import load_dotenv from isek.agent.isek_agent import IsekAgent from isek.models.openai import OpenAIModel
# Load environment variables from .env load_dotenv()
# Initialize the agent with OpenAI agent = IsekAgent(
name="My Agent", model=OpenAIModel(model_id="gpt-4o-mini"), description="A helpful assistant", instructions=["Be polite", "Provide accurate information"], success_criteria="User gets a helpful response"
)
# Run a simple interaction response = agent.run("hello") print(response)
Using LiteLLM (for other models): .. code-block:: python
from dotenv import load_dotenv from isek.agent.isek_agent import IsekAgent from isek.models.litellm import LiteLLMModel
load_dotenv()
# Initialize the agent with any LiteLLM-supported model agent = IsekAgent(
name="My Agent", model=LiteLLMModel(model_id="claude-3-sonnet-20240229"), # Anthropic Claude description="A helpful assistant"
)
response = agent.run("hello") print(response)
Run your agent in a new terminal:
python run_my_agent.py
You should see the agent's response printed in your terminal.
Exploring the ISEK CLI#
ISEK provides a command-line interface for managing agents, running examples, and performing maintenance tasks:
isek --help # View all available commands
isek example list # List available example scripts
isek example run <name> # Run a specific example
isek clean # Clean up temporary files
Advanced Usage and Examples#
For more advanced scenarios, including multi-agent collaboration, P2P networking, and custom tool integration, explore the examples/ directory in the ISEK repository. Each example is documented and demonstrates a specific use case or feature.
Further Reading#
User Guide: See the User Guide for in-depth concepts and configuration options.
API Reference: See the API Reference for detailed API documentation.
Contributing: See Contributing if you wish to contribute to ISEK.
If you encounter issues or have questions, please open an issue on GitHub or contact the ISEK team.